Quadratures Involving Polynomialsand Daubechies '

نویسندگان

  • WEI - CHANG
  • JANN - CHANG YAN
چکیده

Scaling equations are used to derive formulae of quadratures involving polynomials and scaling/wavelet functions with compact supports; in particular, those discovered by Daubechies. It turns out that with a few parameters, which are theoretically exact, these quadratures can be evaluated with algebraic formulae instead of numerical approximations. Those parameters can be obtained with high precision by solving well-conditioned linear systems of equations which involve matrices already seen in the literature of wavelets for other purposes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On an Iyengar-type inequality involving quadratures in n knots

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a b s t r a c t In this short note, we give an Iyengar-type inequality involving quadratures in n knots, where n is an arbit...

متن کامل

Integer-Valued Designs and Wavelet Versions of Nonparametric Curve Estimators Abbreviated title: Wavelet Curve Estimation

In this article, we discuss wavelet versions of nonparametric curve estimators and weighted least squares wavelet regression. We introduce a modi ̄ed wavelet version of the Gasser-MÄ uller estimator that is unbiased whenever a wavelet representation of the nonparametric response curve correctly speci ̄es the response. In some cases, involving the Daubechies wavelet system, we ̄nd that the modi ̄ed ...

متن کامل

Orthogonal Laurent polynomials corresponding to certain strong Stieltjes distributions with applications to numerical quadratures

In this paper we shall be mainly concerned with sequences of orthogonal Laurent polynomials associated with a class of strong Stieltjes distributions introduced by A.S. Ranga. Algebraic properties of certain quadratures formulae exactly integrating Laurent polynomials along with an application to estimate weighted integrals on [−1, 1] with nearby singularities are given. Finally, numerical exam...

متن کامل

Application of Daubechies wavelets for solving Kuramoto-Sivashinsky‎ type equations

We show how Daubechies wavelets are used to solve Kuramoto-Sivashinsky type equations with periodic boundary condition‎. ‎Wavelet bases are used for numerical solution of the Kuramoto-Sivashinsky type equations by Galerkin method‎. ‎The numerical results in comparison with the exact solution prove the efficiency and accuracy of our method‎.    

متن کامل

Nonexistence of Chebyshev - Type Quadratures on Infinite Intervals

Quadrature rules on semi-infinite and infinite intervals are considered involving weight functions of the Laguerre and Hermite type. It is shown that such quadrature rules cannot have equal coefficients and real nodes unless the algebraic degree of accuracy is severely limited.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994